Sparse Representation of High Dimensional Data for Classification: Research and Experiments - Salman Siddiqui - Bücher - VDM Verlag Dr. Müller - 9783639132991 - 5. März 2009
Bei Nichtübereinstimmung von Cover und Titel gilt der Titel

Sparse Representation of High Dimensional Data for Classification: Research and Experiments

Preis
€ 52,49

Bestellware

Lieferdatum: ca. 14. - 23. Jan 2026
Weihnachtsgeschenke können bis zum 31. Januar umgetauscht werden
Zu deiner iMusic Wunschliste hinzufügen
oder

In this book you will find the use of sparse Principal Component Analysis (PCA) for representing high dimensional data for classification. Sparse transformation reduces the data volume/dimensionality without loss of critical information, so that it can be processed efficiently and assimilated by a human. We obtained sparse representation of high dimensional dataset using Sparse Principal Component Analysis (SPCA) and Direct formulation of Sparse Principal Component Analysis (DSPCA). Later we performed classification using k Nearest Neighbor (kNN) Method and compared its result with regular PCA. The experiments were performed on hyperspectral data and various datasets obtained from University of California, Irvine (UCI) machine learning dataset repository. The results suggest that sparse data representation is desirable because sparse representation enhances interpretation. It also improves classification performance with certain number of features and in most of the cases classification performance is similar to regular PCA.

Medien Bücher     Taschenbuch   (Buch mit Softcover und geklebtem Rücken)
Erscheinungsdatum 5. März 2009
ISBN13 9783639132991
Verlag VDM Verlag Dr. Müller
Seitenanzahl 64
Maße 150 × 220 × 10 mm   ·   104 g
Sprache Englisch