Practical Full Stack Machine Learning: A Guide to Build Reliable, Reusable, and Production-Ready Full Stack ML Solutions - Alok Kumar - Bücher - Bpb Publications - 9789391030421 - 26. November 2021
Bei Nichtübereinstimmung von Cover und Titel gilt der Titel

Practical Full Stack Machine Learning: A Guide to Build Reliable, Reusable, and Production-Ready Full Stack ML Solutions

Alok Kumar

Preis
€ 46,49

Bestellware

Lieferdatum: ca. 29. Nov - 10. Dez
Weihnachtsgeschenke können bis zum 31. Januar umgetauscht werden
Zu deiner iMusic Wunschliste hinzufügen

Practical Full Stack Machine Learning: A Guide to Build Reliable, Reusable, and Production-Ready Full Stack ML Solutions

Master the ML process, from pipeline development to model deployment in production.



KEY FEATURES

? Prime focus on feature-engineering, model-exploration & optimization, dataops, ML pipeline, and scaling ML API.

? A step-by-step approach to cover every data science task with utmost efficiency and highest performance.

? Access to advanced data engineering and ML tools like AirFlow, MLflow, and ensemble techniques.



WHAT YOU WILL LEARN

? Learn how to create reusable machine learning pipelines that are ready for production.

? Implement scalable solutions for pre-processing data tasks using DASK.

? Experiment with ensembling techniques like Bagging, Stacking, and Boosting methods.

? Learn how to use Airflow to automate your ETL tasks for data preparation.

? Learn MLflow for training, reprocessing, and deployment of models created with any library.

? Workaround cookiecutter, KerasTuner, DVC, fastAPI, and a lot more.




WHO THIS BOOK IS FOR

This book is geared toward data scientists who want to become more proficient in the entire process of developing ML applications from start to finish. Knowing the fundamentals of machine learning and Keras programming would be an essential requirement.



TABLE OF CONTENTS

1. Organizing Your Data Science Project

2. Preparing Your Data Structure

3. Building Your ML Architecture

4. Bye-Bye Scheduler, Welcome Airflow

5. Organizing Your Data Science Project Structure

6. Feature Store for ML

7. Serving ML as API


424 pages

Medien Bücher     Taschenbuch   (Buch mit Softcover und geklebtem Rücken)
Erscheinungsdatum 26. November 2021
ISBN13 9789391030421
Verlag Bpb Publications
Seitenanzahl 424
Maße 191 × 235 × 22 mm   ·   726 g
Sprache Englisch  

Alle anzeigen

Weitere Titel von Alok Kumar